218. The Dipole Moments of 1:4-Dinitro-, 1:3:5-Trinitro-, and Certain 2:4:6-Trisubstituted-1:3:5-trinitro-benzenes.

By Catherine G. Le Fèvre and Raymond J. W. Le Fèvre.
In connexion with the equivalence of the two oxygen atoms of a nitro-group, several writers have recently referred to the dipole moments of the substances included in the title as being indistinguishable from zero. Such statements are, however, scarcely justified by the literature, for no less than 12 out of the 14 recorded determinations lie between 0.55 and I-1 units* (see Table I), the solvent being benzene for all cases except ref. 8, where naphthalene was used.

Now whilst the variations of the above results can only be ascribed to experimental errors, their magnitudes can be explained in at least four ways: (1) that the technique adopted made inadequate allowance for the atomic polarisations during the evaluation of the final moments, (2) that the use of benzene as solvent may have caused the solutes to exhibit abnormally large atomic polarisations, (3) that unsuspected molecular-compound formation between the solutes and the solvent occurred (cf. Bennett, Ann. Reports, 1929, 26, 130)-any of which would operate to give misleadingly large apparent total polaris-ations-or (4) that the substances do, in fact, possess appreciable permanent moments.
(1) It is impossible to say accurately a priori what the atomic polarisations of such molecules would be; the measurements of Sugden and Groves (J., 1934, 1091; cf. also

[^0]Table I.

References.-(1) Williams, Physikal. Z., 1928, 29, 204. (2) Idem, J. Amer. Chem. Soc., 1928, 50, 2350. (3) Williams and Schwingel, ibid., p. 362. (4) Tiganik, Z. physikal. Chem., 1931, B, 13, 425. (5) Parts, ibid., 1929, B, 4, 227. (6) Höjendahl, " Studies in Dipole Moment," Copenhagen, 1928 ; Physikal. Z., 1929, 30, 391 ; Nature, 1926, 117, 892 . (7) Briegleb, Naturwiss., 1934, 22, 105. (8) Briegleb and Kambeitz, Z. physikal. Chem., 1934, B, 2', 11. (9) Lütgert, ibid., 1932, B, 14, 27.
McAlpine and Smyth, J. Chem. Physics, 1935, 3, 55) show that nitrobenzene in the vapour state has an atomic polarisation of about 4 c.c.; benzene has only a small value, ca. 2 c.c. (Sugden, Trans. Faraday Soc., 1934, 30, 738). It is therefore evident that to the nitrogroup itself an atomic polarisation of $c a .2$ c.c. must be ascribed; but even though such polarisations are roughly additive (Sugden, loc. cit.), the general magnitude of the above polarisation values could only be thus partly accounted for. (2) Briegleb (Z. physikal. Chem., 1932, $B, 16,276$) emphasised that for certain solutes the infra-red polarisation is much higher in benzene than in carbon tetrachloride or heptane, and suggested the possibility that this is a general effect, and that all moment values calculated from benzene solution are too high on account of the assumption of a uniformly constant electron plus atomic polarisation in all solvents. (3) It is noteworthy that Kremann (Monatsh., 1908, 29,863) has shown cryoscopically that a compound $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{3}, \mathrm{C}_{6} \mathrm{H}_{6}$ has a definite existence in the solid state. (4) Permanent moments in this group of compounds would arise if the configuration of the nitro-radical were non-planar. This is referred to later.

Present Work.-With these points in mind, therefore, we have (a) repeated the measurements for trinitromesitylene and the two polynitrobenzenes in benzene solution, (b) sought to avoid as far as possible the difficulties outlined under (l) above, and to minimise experimental errors, by making our observations on each solution at the two temperatures 25° and 45°, and (c) investigated the possible operation of factors (2) and (3) by using solvents other than benzene.

In connexion with the results under (b), it becomes of interest to examine arithmetically how far such data can be trusted to amend the relevant parts of Table I. The relation between polarisation and temperature is accepted as $P_{T}=A+B / T$, in which A is the distortion polarisation (i.e., the sum of the electronic and the atomic polarisation) and B is $4 \pi N \mu^{2} / 9 k$; both are assumed to be constant and invariant with temperature (cf. Debye, " Handbuch der Radiologie," Vol. VI) within the limits indicated by Meyer (Z. physikal. Chem., 1930, 8, $B, 27$) and Goss (J., 1933, 9341). In our present enquiry therefore, we have $P_{25^{\circ}}-P_{45^{\circ}}=B / 298-B / 318$, and $\mu=0.01273 B^{\frac{1}{2}}$. In the following table are set out the differences of polarisation at 25° and 45° which must be measured when compounds having moments ranging from 0 to l unit are under investigation :

Moment	0	$0 \cdot 1$	$0 \cdot 25$	0.5	$0 \cdot 75$	$1 \cdot 0$
B.	0	$61 \cdot 7$	$385 \cdot 7$	$1542 \cdot 7$	$3471 \cdot 1$	$6170 \cdot 8$
$P_{25^{\circ}}-P_{45^{\circ}}$ (c.c.)	0	0.01	0.08	$0 \cdot 33$	$0 \cdot 73$	$1 \cdot 30$

From repeated measurements of the resonance points and densities for a specimen of benzene in the apparatus used in all our observations, we conclude that our polarisation figures are accurate to within $\pm 0 \cdot 15$ c.c., so that, when the same solution is being compared at two temperatures 20° apart, polarisation differences resulting from the solute molecules having moments of the order 0.5 unit should be detectable with certainty.*

[^1]
Experimental.

Materials.-1:4-Dinitrobenzenc. From p-nitroaniline, via the nitroso-derivative (Bamberger and Hübner, Ber., 1903, 36, 3809); recrystallised from benzene; m. p. 171-172 ${ }^{\circ}$.

1:3:5-Trinitrobenzene. From 2:4:6-trinitrotoluene by oxidation and decarboxylation (Centr., 1902, i, 149; Friedländer, Vol. 4, 34); recrystallised from benzene; m. p. 121.5$122.5^{\circ}$.

Trinitromesitylene. By direct nitration of the hydrocarbon and recrystallisation from alcohol; m. p. 232- 233°.

The benzene and carbon tetrachloride used were purified as detailed by Le Fèvre and Smith (J., 1932, 2239). Dioxan was refluxed over sodium wire for a day, distilled (b. p. 101$102^{\circ} / 760 \mathrm{~mm}$.), fractionally frozen (m. p. $10-11^{\circ}$), and preserved over sodium. Chloroform was dried over phosphoric oxide, and distilled through a long column immediately prior to weighing.

Measurements.-The dielectric constants and densities of dilute solutions in benzene at 25° and 45°, and in the other solvents at 25°, were determined by methods set out before (this vol., p. 480). The polarisations of the solutes were calculated in the usual manner. The significant data are collected in the following tables, in which the symbols M, P, and R, refer respectively to the molecular weights, polarisations, and refractivities of the components, and f to their mol.fraction in the solutions, the subscripts 1 and 2 applying to solute and solvent respectively; ε, d and n, in order, denote the dielectric constant, density, and refractive index of the solutions.

1:4-Dinitrobenzene.

(a) In benzene solution, at 25°.

$f_{1} \cdot 10^{6}$	0	$2213 \cdot 4$	$4520 \cdot 9$	$6400 \cdot 2$	$9610 \cdot 4$
$M_{1} f_{1}+M_{2} f_{2}$	78	$78 \cdot 1992$	$78 \cdot 4069$	$78 \cdot 5760$	$78 \cdot 8649$
¢	2-2725	$2 \cdot 2743$	$2 \cdot 2761$	$2 \cdot 2776$	2.2802
d	$0 \cdot 87370$	$0 \cdot 87542$	$0 \cdot 87719$	$0 \cdot 87863$	$0 \cdot 88112$
$P_{1} f_{1}+P_{2} f_{2}$	26.5894	26.6313	$26 \cdot 6746$	26.7103	26.7709
$P_{2} f_{2} \ldots \ldots \ldots .$.	26.5894	26.5305	26.4692	26.4192	26.3339
$P_{1} f_{1}$		$0 \cdot 1008$	$0 \cdot 2054$	$0 \cdot 2911$	$0 \cdot 4370$
P_{1}	-	$45 \cdot 45$	$45 \cdot 44$	$45 \cdot 48$	$45 \cdot 47$

(b) In benzene solution, at 45°.

$f_{1} \cdot 10^{6}$
$M_{1} f_{1}+M_{2} f_{2}$
$P_{1} f_{1}+P_{2} f_{2}$
$P_{2} f_{2}$
$P_{1} f_{1}$
P_{1}

0
78
$2 \cdot 2330$
$0 \cdot 85208$
$26 \cdot 6643$
26.6643
-
-
$2213 \cdot 4$
$78 \cdot 1992$
$2 \cdot 2349$
$0 \cdot 85380$
$26 \cdot 7076$
$26 \cdot 6053$
$0 \cdot 1023$
$45 \cdot 77$
$4520 \cdot 9$
$78 \cdot 4069$
$2 \cdot 2367$
$0 \cdot 85556$
$26 \cdot 7510$
$26 \cdot 5438$
$0 \cdot 2072$
$45 \cdot 80$

$6400 \cdot 2$	$9610 \cdot 4$
$78 \cdot 5760$	$78 \cdot 8649$
$2 \cdot 2381$	$2 \cdot 2407$
0.85698	$0 \cdot 85951$
$26 \cdot 7857$	$26 \cdot 8449$
$26 \cdot 4936$	$26 \cdot 4080$
$0 \cdot 2921$	$0 \cdot 4369$
$45 \cdot 64$	$45 \cdot 46$

(c) In dioxan solution, at 25°.*

$f_{1} \cdot 10^{6}$	0	$4003 \cdot 2$	$4079 \cdot 4$	$7922 \cdot 3$	$8745 \cdot 7$
$M_{1} f_{1}+M_{2} f_{2}$	88	$88 \cdot 3202$	$88 \cdot 3264$	88.6338	88.6996
	$2 \cdot 3060$	$2 \cdot 3093$	2-3094	$2 \cdot 3127$	$2 \cdot 3134$
d	$1 \cdot 02798$	$1 \cdot 03034$	$1 \cdot 03037$	1.03260	1.03308
$P_{1} f_{1}+P_{2} f_{2}$	25.9637	26.0443	26.0467	26.1267	$26 \cdot 1436$
$P_{2} f_{2} \ldots \ldots \ldots \ldots$	$25 \cdot 9637$	25.8598	25.8578	25.7580	25.7366
$P_{1} f_{1}$	-	0.1845	0-1889	$0 \cdot 3687$	$0 \cdot 4070$
P_{1}	-	$46 \cdot 09$	$46 \cdot 31$	$46 \cdot 54$	46.54

(d) In chloroform solution, at $25^{\circ} . \dagger$

$f_{1} \cdot 10^{6} \ldots$	0	$5920 \cdot 0$	$7872 \cdot 0$	$9096 \cdot 6$	$11422 \cdot 9$
$M_{1} f_{1}+M_{2} f_{2}$	119.5	119.7871	$119 \cdot 8819$	119.9412	119.9551
$\epsilon \ldots \ldots \ldots \ldots$	$4 \cdot 7240$	$4 \cdot 6916$	$4 \cdot 6777$	$4 \cdot 6712$	$4 \cdot 6576$
d	$1 \cdot 46814$	$1 \cdot 46811$	$1 \cdot 46806$	$1 \cdot 46805$	$1 \cdot 46803$
$P_{1} f_{1}+P_{2} f_{2}$	$45 \cdot 0799$	$45 \cdot 0128$	44.9737	$44 \cdot 9605$	$44 \cdot 8912$
$P_{2} f_{2}$	45.0799	$44 \cdot 8130$	44.7251	$44 \cdot 6698$	$44 \cdot 5650$
$P_{1} f_{1}$	-	0•1998	$0 \cdot 2486$	$0 \cdot 2907$	$0 \cdot 3262$
P_{1}	-	$33 \cdot 75$	31.58	31.96	$28 \cdot 56$

* Values of ϵ from Smyth and Walls (J. Amer. Chem. Soc., 1931, 53, 2115).
\dagger Values of ϵ from Ball (J., 1930, 595).

1:3:5-Tvinitrobenzene.

(a) In benzene solution, at 25°.

0
78
$2 \cdot 2725$
$0 \cdot 87370$
$26 \cdot 5894$
$26 \cdot 5894$
-
-
$6100 \cdot 5$
$78 \cdot 8235$
$2 \cdot 2790$
$0 \cdot 88049$
$26 \cdot 7583$
$26 \cdot 4272$
0.3311
$54 \cdot 27$
$7520 \cdot 0$
$79 \cdot 0152$
$2 \cdot 2805$
$0 \cdot 88201$
$26 \cdot 7993$
$26 \cdot 3894$
$0 \cdot 4099$
$54 \cdot 51$
(b) In benzene solution, at 45°.

${ }_{f_{1}} \cdot 10^{6} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	
	d
	$P_{1} f_{1}+P_{2} f_{2}$
	$P_{2} f_{2}$
	$P_{1} 1_{1}$

0	$6100 \cdot 5$	$7520 \cdot 0$
78	78.8235	$79 \cdot 0152$
$2 \cdot 2330$	$2 \cdot 2396$	$2 \cdot 2411$
$0 \cdot 85208$	$0 \cdot 85869$	$0 \cdot 86009$
$26 \cdot 6643$	$26 \cdot 8396$	$26 \cdot 8841$
$26 \cdot 6643$	$26 \cdot 5016$	$26 \cdot 4638$
-	$0 \cdot 3380$	$0 \cdot 4203$
-	$55 \cdot 41$	$55 \cdot 89$

(c) In dioxan solution, at 25°.

0
88
2.3060
1.02798
25.9637
25.9637
-
-

$6762 \cdot 7$	$7307 \cdot 4$
$88 \cdot 8453$	$88 \cdot 9135$
$2 \cdot 3157$	$2 \cdot 3158$
$1 \cdot 03445$	$1 \cdot 03498$
$26 \cdot 1836$	$26 \cdot 1917$
$25 \cdot 7881$	$25 \cdot 7740$
0.3955	$0 \cdot 4177$
$58 \cdot 48$	$57 \cdot 16$

(d) In chloroform solution, at 25°.

0	$2665 \cdot 0$	$4463 \cdot 0$
$119 \cdot 5$	119.7492	$119 \cdot 9173$
$4 \cdot 7240$	$4 \cdot 7116$	$4 \cdot 7018$
$1 \cdot 46814$	$1 \cdot 46910$	$1 \cdot 46976$
45.0799	$45 \cdot 0771$	$45 \cdot 0668$
45.0799	$44 \cdot 9598$	$44 \cdot 8787$
-	$0 \cdot 1173$	$0 \cdot 1881$
-	$44 \cdot 02$	$42 \cdot 15$

Trinitromesitylene.

(a) In benzene solution, at 25°.

0
78
$2 \cdot 2725$
$0 \cdot 87370$
26.5894
26.5894
-
-
$1450 \cdot 0$
$78 \cdot 2566$
$2 \cdot 2744$
$0 \cdot 87529$
$26 \cdot 6563$
$26 \cdot 5508$
0.1035
$71 \cdot 38$
$2891 \cdot 0$
$78 \cdot 5117$
$2 \cdot 2756$
$0 \cdot 87678$
26.7154
$26 \cdot 5125$
$0 \cdot 2029$
$70 \cdot 18$
(b) In benzene solution, at 45°.
0
78
$2 \cdot 2330$
0.85208
26.6643
26.6643
-
-
$1450 \cdot 0$
$78 \cdot 2566$
$2 \cdot 2345$
0.85353
$26 \cdot 7295$
$26 \cdot 6256$
$0 \cdot 1039$
$71 \cdot 65$
$2891 \cdot 0$
$78 \cdot 5117$
$2 \cdot 2361$
0.85514
$26 \cdot 7907$
$26 \cdot 5872$
$0 \cdot 2035$
$70 \cdot 39$
$5815 \cdot 0$
$79 \cdot 0292$
$2 \cdot 2391$
$0 \cdot 85819$
$26 \cdot 9176$
$26 \cdot 5092$
$0 \cdot 4084$
$70 \cdot 23$
(c) In dioxan solution, at 25°.

$f_{1} \cdot 10^{6}$	0
$M_{1} f_{1}+M_{2} f_{2}$	88
	$2 \cdot 3060$
d	$1 \cdot 02798$
$P_{P} f_{1}+P_{2} f_{2}$	25.9637
$P_{2} f_{2}$	25.9637
$P_{1} f_{1}$	-
P_{1}...........	-

$2639 \cdot 9$	$3318 \cdot 3$
$88 \cdot 4409$	$88 \cdot 5542$
2.3126	2.3133
$1 \cdot 03030$	$1 \cdot 03033$
$26 \cdot 1266$	$26 \cdot 1690$
$25 \cdot 8952$	$25 \cdot 8776$
0.2314	0.2914
$87 \cdot 65$	$87 \cdot 82$

$4095 \cdot 6$
$88 \cdot 6839$
$2 \cdot 3148$
$1 \cdot 03088$
$26 \cdot 2142$
$25 \cdot 8573$
$0 \cdot 3569$
$87 \cdot 14$
$5442 \cdot 7$
$88 \cdot 9090$ $2 \cdot 3180$ 1.03184
$26 \cdot 3006$
$25 \cdot 8224$
0.4782
$87 \cdot 86$
(d) In chloroform solution, at 25°.

$f_{1} \cdot 10^{6}{ }_{M_{1}} f_{1}+\ldots \ldots$.
$P_{1} f_{1}+P_{2} f_{2}$
$P_{2} f_{2}$
$P_{1} f_{1}$
P_{1}

0
$119 \cdot 5$
$4 \cdot 7240$
1.46814
45.0799
45.0799
-
-

$2991 \cdot 9$	$3580 \cdot 7$
$119 \cdot 9054$	$119 \cdot 9852$
$4 \cdot 7035$	$4 \cdot 6993$
$1 \cdot 46763$	$1 \cdot 46753$
$45 \cdot 1370$	$45 \cdot 1472$
$44 \cdot 9450$	$44 \cdot 9185$
$0 \cdot 1920$	$0 \cdot 2287$
$64 \cdot 17$	$63 \cdot 87$

$6000 \cdot 0$	$8571 \cdot 3$
$120 \cdot 3130$	$120 \cdot 6614$
$4 \cdot 6827$	$4 \cdot 6650$
$1 \cdot 46710$	$1 \cdot 46666$
$45 \cdot 1925$	$45 \cdot 2387$
$44 \cdot 8094$	$44 \cdot 6935$
0.3831	0.5452
$63 \cdot 85$	$63 \cdot 61$

Estimated P_{1} values for $\mathrm{f}_{1}=0$ for the above solutions.
Dinitrobenzene. Trinitrobenzene. Trinitromesitylene.

ca. 46
ca. 46
ca. 47
38.9

$$
\text { ca. } 55
$$

$$
\text { ca. } 70.5
$$ $38 \cdot 9$

ca. 55.5
ca. 70.5
ca. $61 \cdot 5 \quad$ ca. 88
$46 \cdot 6$
$64 \cdot 2$

Discussion.

The results (a) for benzene solutions at 25° require no special comment and compare satisfactorily with the earlier measurements cited in Table I. For all three compounds in benzene solution the polarisation appears to be higher at 45°; of course, this also happens for the (non-polar) benzene, but comparisons of the P_{1} increase per degree for the solutes and for the solvent show clearly that the polarisation increase observed with the solutions cannot arise from this cause alone; i.e., the increase of polarisation per degree for the benzene used is seen to be 0.003745 c.c., as against average increases for the three solutes of $0.0093,0.0689$, and 0.0095 c.c. respectively. We conclude, therefore, that these substances (in benzene solution) cannot have moments much greater than 0.5 unit.

An independent indication that the moment of $1: 4$-dinitrobenzene is actually of a very low order is provided by the measurements of Lippmann (Z. Elektrochem., 1911, 17, 15), which relate to the Kerr constants of the three isomeric dinitrobenzenes in dilute benzene solutions. As pointed out by Briegleb and Wolf (Fortschr. Chem., 1931, 21, 44), this constant, running in magnitude in the direction of the moment of the molecule concerned, can therefore be used as a guide to this property. It is noteworthy, this being the case, that only for the para-compound is a value for $B\{3 /(\varepsilon+2)\}^{2}$ obtained of the same order as that for benzene itself; the m - and o-dinitrobenzenes both give numerically much larger results.

The effects of changing the solvent to dioxan appear to show that these substances are not absolutely non-polar ; this follows from the fact that, not even in the case of chloroform, where no combination can reasonably be envisaged, do the total polarisations fall to the ${ }_{\mathrm{E}} P$ and ${ }_{\mathrm{A}} P$ sum * (taken as the $\left[R_{L}\right]_{\mathrm{D}}$ values, viz., $38 \cdot 5$ c.c. for the $1: 4$-dinitro- and 44.7 c.c. for the 1:3:5-trinitro-benzene, and $59 \cdot 2$ c.c. for trinitromesitylene). \dagger If the differences $\left(0 \cdot 4,1 \cdot 9\right.$, and $5 \cdot 0$ c.c., respectively) are regarded as ${ }_{o} P$ values in chloroform ($\varepsilon_{25^{\circ}}=4.724$) and are translated into gas values (cf. Le Fèvre, this vol., p. 773) by the equation ${ }_{o} P_{1} /{ }_{0} P_{2}$. $\left(\varepsilon_{1}+2\right) /\left(\varepsilon_{2}+2\right)=K$ (where K is taken as $c a .1 \cdot 3$, and ε_{2} as unity), the results ($0 \cdot 69$, $3 \cdot 27$, and 8.6 c.c., respectively) would correspond to moments of the orders $0.2,0 \cdot 4$, and $0 \cdot 6$, respectively. The present work further strongly suggests that these substances associate with benzene and dioxan.

The virtual absence of changes of polarisation with temperature observed experimentally do not militate against such views, because (attachment presumably occurring at the

[^2]nitro-groups) from symmetry considerations no increase of moment need necessarily parallel the molecular polarisation increase caused by addition.

Configuration of the Nitro-group.-In seeking for an explanation of the finite moments estimated above, it should be emphasised that the possibility of the nitro-group being non-planar does not appear to be excluded by physical evidence. This consists principally of the demonstration of the crystallographic equivalence of the two oxygen atoms and their equidistance from the nitrogen atom (Hertel, Z. physikal. Chem., 1930, B, 7, 188; Hendricks and Hilbert, J. Amer. Chem. Soc., 1931, 53, 4280; cf. also Schaefer, Trans. Faraday Soc., 1929, 24, 841, and Banerjee, Phil. Mag., 1934, 18, 1004)-observations which only rule out (by the fact that elements have larger radii as anions than as covalently attached atoms) the older semipolar bond structure in which one oxygen was represented as carrying a unit anionic charge. The early triangular formula $\mathrm{R}-\mathrm{N}<{ }_{\mathrm{O}}^{?}$ would satisfy present requirements save for the fact that the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle in this group is definitely of the order 120° (above references) and, in consequence, the O-O distance is too great for a single bond.

Raman spectra data seem suggestive. The force constant (9.48×10^{-5} dyne) characterising the links in the (aryl) nitro-group (Dadieu, Jele, and Kohlrausch, Monatsh., 1931, $58,428)$ is greater than that required for a single bond $\left(6.7 \times 10^{-5}\right.$ dyne) and less than that for a double bond ($\mathbf{1 4} \times 10^{-5}$ dyne) (cf. Bailey and Cassie, Proc. Roy. Soc., A, 1931, 132, 236). We therefore envisage a structure in which three electrons from the nitrogen atom participate, with one electron from the carbon and one from each of the oxygen atoms, in three localised bonds (one $\mathrm{N}-\mathrm{C}$, and two $\mathrm{N}-\mathrm{O}$), and in which one further electron from each of the oxygen atoms forms a non-localised bond over the NO_{2} angle. There is thus left an electron pair on the nitrogen atom, and the complex becomes analogous to the ions $\mathrm{SO}_{3}{ }^{-2}$, $\mathrm{ClO}_{3}{ }^{-1}, \mathrm{AsO}_{3}^{-3}$, etc., in that it should be pyramidal * (cf. Zachariasen, J. Amer. Chem. Soc., 1931, 53, 2123). Therefore in, e.g., nitrobenzene a large component moment should exist at an angle to the $\mathrm{Ph}-\mathrm{N}$ axis, and p-dinitro- and s.-trinitro-benzenes should become formally analogous to the quinol ethers and other compounds with dipolar groups capable of free rotation, i.e., they should have finite permanent moments which are the root mean squares of the instantaneous resultant moments (varying during the rotation of the nitroxyls about the C-N links). Zahn's observation (Physikal. Z., 1933, 34, 461), that $\mathrm{N}_{2} \mathrm{O}_{4}$ has a finite moment ($0 \cdot 6 \pm 0 \cdot 1$; cf., however, J. Amer. Chem. Soc., 1934, 56, 1427), also becomes on such an hypothesis not incompatible with the conclusions of Hertel and Hendricks, etc., or with those of Harris and King (J. Chem. Physics, 1934, 2, 51), who infer, from the infra-red absorption spectra, that in $\mathrm{N}_{2} \mathrm{O}_{4}$ the two nitro-groups are non-coplanar (cf. also Sutherland, Proc. Roy. Soc., 1933, A, 141, 342, 535).

An estimate of the degree of departure from plane triangularity is obtained by assuming that the greater part (say 3.2 out of the 3.8 units) of the moment associated with the nitro-group arises within the group itself, i.e., in the $\mathrm{N}-\mathrm{O}$ and not in the $\mathrm{C}-\mathrm{N}$ links, and solving the equation (Williams, J.Amer. Chem. Soc., 1928,50,2350) μ resultant $=\sqrt{2} . \mu . \sin \theta$ for the case of 1:4-dinitrobenzene. We have $\sin \theta=0 \cdot 2 / 3 \cdot 2 \sqrt{2}=0 \cdot 0442$, whence θ is ca. $2 \cdot 5^{\circ}$; such a small departure from planarity would escape detection by X-ray methods.

Effect of Steric Hindrance.-It follows that, if several such pyramidal nitro-groups in a given aromatic molecule are hindered in their rotation by blocking groups which themselves cannot be divided by the plane of the ring as by a plane of symmetry, there is a high chance that the resultant molecular moment would be much greater than for otherwise analogous circumstances in which free rotation is fully possible. Along these lines \dagger the definitely greater moment of trinitromesitylene can be understood. In Fig. l are shown the sections which the constituent atoms of this compound would have to make in the plane of the paper during their free rotation; they are drawn from the data of Pauling

[^3]and Huggins (Proc. Nat. Acad. Sci., 1932, 18, 293) and can be regarded (in the matter of dimension) as minimum estimates. It can be seen that no interference is predicted. Recent resolutions of diphenyl compounds, and other work summarised by Sidgwick (Ann. Reports, 1932 and 1933), indicate, however, that the use of considerably greater atomic radii in such questions is justifiable. Accordingly, we have superimposed on the above section the dotted outline obtained when the "Wirkungs-radius" (Stuart, Z. physikal. Chem., 1935, B, 27, 353) of each atom concerned is employed. In such a structure, completely symmetrical arrangements of the three nitro-groups are unlikely, and, if these radicals have the slightly pyramidal configuration referred to above, the molecule should exhibit a finite moment different from that to be expected were free rotation unhindered.

Fig. 1.

Fig. 2.

In connexion with the above explanation, we have determined the total polarisation and thence the moment of trinitro-5-tert.-butyl-m-xylene (I; see p. 964), in which (as the plan, Fig. 2, shows) the situation considered for trinitromesitylene is exaggerated by replacement of methyl by tert.-butyl. The measurements have been carried out in carbon tetrachloride as well as benzene, in order to detect solvent effects, if any.

Trinitro-tert.-butylxylene in benzene.

$f_{1} .10^{6} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	0	$5214 \cdot 6$	$6044 \cdot 89$	8497-29	$17404 \cdot 6$
$M_{1} f_{1}+M_{2} f_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	78	$79 \cdot 1419$	$79 \cdot 3239$	$79 \cdot 8609$	$81 \cdot 8116$
Temperature 25°.					
......	$2 \cdot 2725$	$2 \cdot 2829$	$2 \cdot 2845$	$2 \cdot 2895$	$2 \cdot 3074$
d	$0 \cdot 87380$	$0 \cdot 87930$	0.88014	$0 \cdot 88279$	$0 \cdot 89224$
$P_{1} f_{1}+P_{2} f_{2}$	26.5850	26.9608	27.0202	27-1948	$27 \cdot 8308$
	26.5850	26.4464	26.4243	26.3591	$26 \cdot 1223$
P_{1}	-	$0 \cdot 5144$	$0 \cdot 5959$	$0 \cdot 8357$	$1 \cdot 7085$
P_{1} 1...........................	-	$98 \cdot 66$	98.66	$98 \cdot 35$	$98 \cdot 16$
	$1 \cdot 49733$	-	$1 \cdot 49790$	$1 \cdot 49833$	1-49914
n	$2 \cdot 24200$	-	$2 \cdot 24370$	$2 \cdot 24499$	$2 \cdot 24741$
$R_{1} f_{1}+R_{2} f_{2}$	26.13565	-	26.41346	26.53169	26.92878
$R_{2} f_{2} \ldots \ldots \ldots$	$26 \cdot 13565$	-	$25 \cdot 97770$	$25 \cdot 91357$	$25 \cdot 68076$
$R_{1} f_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	-	-	$0 \cdot 43576$	$0 \cdot 61812$	$1 \cdot 24802$
$R_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	-	-	72-1	$72 \cdot 7$	$71 \cdot 7$
Temperature 45°.					
¢	$2 \cdot 2330$	$2 \cdot 2435$	$2 \cdot 2450$	$2 \cdot 2500$	$2 \cdot 2677$
d	$0 \cdot 8521$	0.85766	$0 \cdot 85855$	0.86115	$0 \cdot 87081$
$P_{1} f_{1}+P_{2} f_{2}$	26.6640	$27 \cdot 0406$	$27 \cdot 0974$	$27 \cdot 2757$	$27 \cdot 9072$
$P_{2} f_{2} \ldots \ldots \ldots \ldots$	$26 \cdot 6640$	26.5249	26.5028	26.4374	$26 \cdot 1999$
$P_{1} f_{1}$		$0 \cdot 5156$	$0 \cdot 5946$	$0 \cdot 8383$	1.7073
P_{1}	-	$98 \cdot 60$	98.35	$98 \cdot 30$	98.09

964 The Dipole Moments of 1:4-Dinitro-, 1:3:5-Trinitro-benzenes, etc.
Trinitro-tert.-butylxylene in carbon tetrachloride.
Temperature 25°.

$f_{1} .10^{6} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	0	$8320 \cdot 4$	$10078 \cdot 5$	$12749 \cdot 7$	$19624 \cdot 4$
$M_{1} f_{1}+M_{2} f_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	154	$155 \cdot 1898$	$155 \cdot 4412$	$155 \cdot 8230$	156.8064
	$2 \cdot 2270$	$2 \cdot 2442$	$2 \cdot 2475$	$2 \cdot 2532$	$2 \cdot 2668$
d	1.5844	1.57910	$1 \cdot 57790$	$1 \cdot 57616$	1.57162
$P_{1} f_{1}+P_{2} f_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$28 \cdot 2142$	28.8102	28.9330	$29 \cdot 1298$	29.6225
$P_{2} f_{2} \ldots \ldots \ldots \ldots$	$28 \cdot 2142$	27.9794	$27 \cdot 9298$	27.8544	27.6605
$P_{1} f_{1}$	-	$0 \cdot 8308$	$1 \cdot 0032$	$1 \cdot 2754$	1.9620
P_{1}	-	$99 \cdot 85$	99.54	$100 \cdot 03$	99.98
Whence $\mu=0 \cdot 22(100-73)^{\frac{1}{2}}=1 \cdot 14$.					

The results are seen to be not inconsistent with expectations based on the foregoing theory, although some of the exaltation of the moment (over that of 5 -tert--butyl-mxylene, for which $\mu=0.25$) is certainly due to induction (cf. Le Fèvre, Le Fèvre, and Robertson, this vol., p. 480). We hope to decide this allotment by an examination of trinitrotri-tert.-butylbenzene.

Constitution of the tert.-Butyl-m-xylene.-Since this substance, believed to be (I), was prepared by trinitration of (II), which might have contained some of its unsymmetrical isomeride (III), it was possible that the product was contaminated with (IV), which would

(I.)

(II.)

(III.)

(IV.)
possess a considerable moment in virtue of its o-dinitro-groups. The recorded preparations of (II) are from m-xylene by either (i) tert.-butyl and aluminium chlorides (Baur, Ber., 1891, 24, 2840) or (ii) isobutyl alcohol and concentrated sulphuric acid (Noelting, Ber., 1892, 25, 791), both of which may give a product of uncertain orientation (cf. Jacobsen, Ber., 1881, 14, 2624; Bialobrzewski, Ber., 1897, 30, 1773; Verley, Bull. Soc. chim., 1898, 19, 67). In these circumstances the isolation of (unstated but evidently small yields of) 3:5-dimethylbenzoic, 3-methyl-5-butylbenzoic, and trimesic acids (Baur, loc. cit.; Ber., 1898, 31, 1345) does not suffice to establish the homogeneity of the butylxylene. Baur (loc. cit.; Ber., 1900, 33, 2564) nitrated this hydrocarbon, but only for the mononitroderivative did he attempt orientation experiments; here again oxidation was employed, the products being given, without discussion, the formulæ shown :

We therefore attempted to assess the purity of (II). This was prepared by Baur's method [(i), above], and fractionated, etc., as closely as possible. Both the step-wise nitrations and the one-stage trinitration of Baur were repeated on a quantitative basis with the material so prepared, the following yields being obtained: Trinitration : 96% crude, 90% recryst. Mononitration : ca. 10% recryst. Mononitro- to dinitro-derivative : 90% crude, 85% recryst. Dinitro- to trinitro-derivative : 98% crude, 95% recryst.

The Relation between General Absorption and Residual Affinity. 965

We infer that the constitution ascribed by Baur to the trinitro-derivative, m. p. 110°, is correct, because a pure specimen can be heated for several hours in piperidine solution and then recovered quantitatively by dilution with water. Had it possessed the constitution (IV), one of the nitro-groups would undoubtedly have been displaced by piperidine (cf. J., 1927, 1113); and, because the crude trinitro-derivative, subjected to the same process, also underwent no change (m. p. and mixed m. p.), we regard the direct trinitration figure as evidence that the hydrocarbon contains at most 4% of the isomeride (III). Such a specimen, after piperidine treatment, was crystallised twice from hot alcohol (forming long, well-developed needles, m. p. $110-111^{\circ}$) and used in the dipole-moment determinations above.

The authors are grateful to Professor F. G. Donnan for permission to use apparatus belonging to the Physical Chemistry Department, and to Mr. J. L. Brine for assistance in the preparative work.

[^0]: * Debye units are referred to throughout.

[^1]: * The discordance between the P_{1} values obtained from a series of solutions at one temperature is probably largely attributable to incorrect relative f_{1} data (errors arising from the evaporation of the volatile solvent, weighings, etc.).

[^2]: * These results therefore disagree with those of Jenkins (Nature, 1934, 134, 217) in that, according to him, no differences exist between the total and the electronic polarisations of $1: 4$-dinitro- and 1:3:5-trinitro-benzene in the polar solvent chloroform. The total polarisations are not quoted in the reference cited, but are given as 34 and 41 c.c. respectively in the Faraday Society's tables of dipole moments (Trans., 1934, Appendix, p. 1193). Comparison with the $\left[K_{L}\right]_{\mathrm{D}}$ values for these substances suggests that these figures are too low.
 \dagger From the following values of atomic, molecular, and group refractions: $\mathrm{NO}_{2}, 7 \cdot 30 ; \mathrm{H}, 1 \cdot 100$; $\mathrm{C}_{6} \mathrm{H}_{6}, 26 \cdot 14$; mesitylene, $\mathbf{4 0 \cdot 6 1}$. Direct measurements, owing to limited solubilities, do not give trustworthy results.

[^3]: * Compare Pauling, J. Amer. Chem. Soc., 1931, 53, 1382, who considers that the closely related nitrate ion may be slightly pyramidal.
 \dagger Compare, however, the opinions of Placzek (" Molekülstruktur," Leipziger Vorträge, 1931) and Weiler (Z. Physik, 1924, 89, 58) upon which alternative but more speculative explanations could be directly based.

